生活资讯
等比数列求和公式 、等比数列求和公式n趋于无穷大
2023-04-17 01:08  浏览:28

怎么推导等比数列求和公式?

首项a1,公比q

a(n+1)=an*q=a1*q^(n )

Sn=a1+a2+..+an

q*Sn=a2+a3+...+a(n+1)

qSn-Sn=a(n+1)-a1

S=a1(q^n-1)/(q-1)

1、等比数列的意义:一个数列,如果任意的后一项与前一项的比值是同一个常数,即:A(n+1)/A(n)=q (n∈N*),这个数列叫等比数列,其中常数q 叫作公比。如:2、4、8、16......2^10 就是一个等比数列,其公比为2,可写为(A2)的平方=(A1)x(A3)。

2、求和公式

等比数列求和公式:Sn=n×a1 (q=1)

Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)=a1(q^n-1)/(q-1)

(q为公比,n为项数)

等比数列求和公式推导:

Sn=a1+a2+a3+...+an(公比为q)

q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)

Sn-q*Sn=a1-a(n+1)

(1-q)Sn=a1-a1*q^n

Sn=(a1-a1*q^n)/(1-q)

Sn=(a1-an*q)/(1-q)

Sn=a1(1-q^n)/(1-q)

3、数学:数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

等比数列怎样求和?

等比数列求和公式为:Sn=n*a1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-anq)/(1-q) (q不等于1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

等比数列求和公式推导

等比数列Sn=a1×(1-q^n)/(1-q),Sn=n×a1(当q=1时);推导过程为:q×Sn=a1×q+a2×q+…+an×q=a2+a3+…+a(n+1),Sn-q×Sn=a1-a(n+1)=a1-a1×q^n,(1-q)×Sn=a1×(1-q^n)。

等比数列的主要性质:

1、若m、n、p、q∈N,且m+n=p+q,则aman=apaq;

2、在等比数列中,依次每k项之和仍成等比数列;

3、若m、n、q∈N,且m+n=2q,则am×an=(aq)2;

4、若G是a、b的等比中项,则G2=ab(G≠0);

5、在等比数列中,首项a1与公比q都不为零;

6、在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1);

7、当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。

等比数列求和公式是什么?

求和公式

求和公式推导:

(1)Sn=a1+a2+a3+...+an(公比为q)

(2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)

(3)Sn-qSn=(1-q)Sn=a1-a(n+1)

(4)a(n+1)=a1qn

(5)Sn=a1(1-qn)/(1-q)(q≠1)

扩展资料

相关应用:

远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中,下一层灯数是上一层灯数的2倍,则塔的顶层共有几盏灯。

每层塔所挂的灯的数量形成一个等比数列,公比q=2,我们设塔的顶层有a1盏灯。7层塔一共挂了381盏灯,S7=381,按照等比求和公式,  那么有a1乘以1-2的7次方,除以1-2,等于381.能解出a1等于3.  尖头必有3盏灯。

参考资料来源:百度百科-等比数列求和公式

等比数列的求和公式是什么?

等比数列求和公式

公式描述:

公式中a1为首项,an为数列第n项,q为等比数列公比,Sn为前n项和。

扩展资料:

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。

性质

(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

(6)等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

在等比数列中,首项A1与公比q都不为零。

参考资料百度百科:等比数列

等比数列求和公式

等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)

拓展资料:

(1) 等比数列:a (n+1)/an=q (n∈N)。

(2) 通项公式:an=a1×q^(n-1);

推广式:an=am×q^(n-m);

(3) 求和公式:Sn=n*a1 (q=1)

Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数)

(4)性质:

①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

③若m、n、q∈N,且m+n=2q,则am*an=aq^2

(5) "G是a、b的等比中项""G^2=ab(G ≠ 0)".

(6)在等比数列中,首项a1与公比q都不为零.

等比数列求和公式的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于等比数列求和公式n趋于无穷大、等比数列求和公式的信息别忘了在本站进行查找喔。

发表评论
0评