这是彭文华的第122篇原创
有人让我推荐数据分析的书。其实这类的书很多,工具类的、语言类的、方法论的、统计类的。那些书很好,也很实用,拿来就能上手。这些书不需要推荐,因为只要用心,你也能总结出来这些东西。假如你在数据分析岗位上做个2、3年,稍微用点心,就能总结出各种分析套路。
今天给大家分享的是一个故事,一个用数据分析对抗经验的故事:《点球成金》,文末有电子书下载方式。
从球探说起
你一定听说过星探,就是专门找各种潜在的能成名的有明星潜质的人。吴奇隆隐于市(摆地摊被星探发现),王俊凯蹲于厕(上厕所被星探发现),鹿晗逛街收名片(韩国留学偶遇星探),雷佳音偶遇大导演。
在体育届,尤其是经济价值非常高的足球、篮球、橄榄球、棒球届,做相同工作的就是球探。这帮球探的工作就是到处闲逛,看比赛,找具有潜质的年轻人。他们尤其喜欢高中生,因为高中生尚未经过系统性的训练,能脱颖而出的都是极其优秀的天才人物。
在美国棒球界,这种竞争非常强烈。美国棒球界和篮球界都有选秀的传统,这是一种非常有意思的规则。简单来说,就是每年都会有无数高中生从各种比赛中脱颖而出。各个球队就会吸纳这些天才人物,加以培养,成为球队的中坚力量。
美国篮球界的选秀逻辑是上一年NBA比赛中未能进入季后赛的14支球队开始选,因为他们的实力比较弱,需要吸纳更强的新鲜血液。这样就能保证NBA30支球队的实力不会出现马太效应。
棒球界也是类似,去年战绩较差的球队,在今年选秀中可以获得优先权。但是棒球有一个非常特殊的地方,就是棒球运动员的潜力很难被预测出来,因此棒球界一直都是靠球探进行目标选秀球员的甄选。
球探评判棒球球员是否有潜质,基本就看是不是跑的快、长的是不是好看,其他的就靠各个球探的直觉。
决策过程也很简单,专家投票。一帮球探聚在一起开会:开始对布鲁斯‧张三投票,然后大家就叽叽喳喳开始讨论,最后谁能说服/强压其他人,就内部决定选中布鲁斯‧张三。
这是典型的经验决策的逻辑。这套逻辑运行的非常有效,就是成本和概率有点高。成本多高呢?一场胜利的成本大概是300万美元。概率多低呢?50个选秀成员中有2个能打进大联盟,球探就能开香槟庆祝了。
棒球中的数据分析
即便是不了解棒球的同学,也应该知道洋基队,即便是不知道洋基队的,也应见过这个棒球帽及Logo:
但是奥克兰运动家队应该是没几个人知道了。但是就是这家球队,创造了50万美元一场胜利的惊人数据。书中的主角比利‧比恩在1997年成为奥克兰运动家队的总经理,并且发掘了以棒球数据分析出名的《棒球摘要》。很可惜,我并没有找到这本书的电子版,但是《点球成金》里用“无知之域”一整章节阐述作者詹姆斯的分析思想,同时还描写出了其他球队“依葫芦画瓢”的拙劣表演导致的各种失败案例。我给你摘抄一段詹姆斯的思想:
当数字拥有说话能力时,便也可以做到语言能做到的事情,比如小说、戏剧、诗歌。这样的数字不仅仅诉说着有关棒球的故事,它讲述的还有性格、心理、荣耀、牺牲、勇气、沮丧、雄心壮志与成功失败。胜利和挫折,这些深埋于潜意识里实实在在的存在,都能在数字中浮现出来。
看上去是不是非常令人心潮澎湃?詹姆斯还提出了一个棒球“制造得分”的公式:
我是不太懂棒球的,看上去他得出这个模型的方法也很笨拙,看上去非常的LOW。但是奥克兰运动家队总经理结合了这套棒球数据分析的理论,进行人才选拔、球队管理。
在《点球成金》的“如何找到真正球手”章节中,比利用数据分析理论,选中了所有球队的球探们都不看好的大屁股捕手杰瑞米‧布朗,35万美元。这个价格低于相同排位选秀签约金额100万美元,与当年最高选秀签约金接近1000万美元相比,连个零头都不够。而这个没人要的大屁股捕手,在2002年第一个被选入大联盟集训。
就这样,奥克兰运动家队,用平均薪水远低于不足150万的球员,从1996年的低谷期慢慢爬起来,1999年赢得87场,2000年91场,2001年102场。而付出的代价与其他队相比,却在逐渐缩小:奥克兰运动家队与纽约洋基队的薪资差额1999年是6000万美元,2002年却变成9000万美元。这可不就是降本增效的典型案例么?
并且凭据数据分析理念,奥克兰运动家队自1999年之后,胜率从来没有低于5成。这是一个非常难得且稳定的数字。
《点球成金》的启示
其实相比起“啤酒和尿布”这种杜撰的案例来说,《点球成金》才更值得各位老板好好研究。这里面不仅有成功案例,还有抄作业的失败案例。
刨除书中关于棒球的内容,我们其实能总结出更多数据分析的应用成败经验:
1、当前其他公司使用传统经验的时候,启动数据分析相当于降维打击,因为你是在用更高维的系统碾压低维系统;
2、老板们不能只看到数据分析的力量,更要尊重数据分析的原则,并且要亲为践行;
3、认知不到位,光抄作业是没用的,招聘几个数据分析师并不能成为核心竞争力;
按照这个逻辑,其实我们还能类推到其他行业,以此来类推预测未来。你看球星和现在的娱乐明星逻辑是不是很类似?甚至我们现在还拥有一个更高级的筛选算法--推荐算法。【戳这里参考“当我们在刷抖音的时候,抖音在干什么?”】。
在这套逻辑下,这个世界出现了一个完全不同于以往成为明星的群体--网红。我们要正视这个群体,因为已经出现了1亿粉丝的网红-TikTok中16岁美国女孩查莉‧德阿梅里奥。在中国,也已经出现了年入过亿的普通人。李佳琦、薇娅、李子柒等一大批毫无背景、没有传统娱乐公司助推的普通人正顺着推荐算法,碾压式的快速超越传统娱乐明星。而且这个趋势会越来越多,越来越快!这是一个光怪陆离的世界,这是一个全新的世界,值得我们全力探索!
另外,这本书里棒球相关的内容太多了,如果你不感兴趣,可以关注第二章“如何找到真正的球手”、第四章“无知之域”和第十二章“理念的速度”。
扩展阅读:《点球成金》电子书已经给你准备好了,后台回复“点球成金”即可下载。另外,本书也已经改编为电影,你也可以找来看看。
配合以下文章享受更佳
热文|当我们在刷抖音的时候,抖音在干什么?
【解密】|7招远离大数据杀熟!
【解密】 |最牛的大数据公司到底有多厉害?
热文|如何搭建一个数据分析体系
干货 |什么才叫做懂业务?分析的5个层次
我需要你的转发,爱你哟
以上就是点球成金:数据分析对抗传统经验的超级案例|彭文华的全部内容了,希望大家喜欢。