将符合缺陷标准的所有缺陷放入到缺陷容器中。
根据本发明的一个方面,所述步骤s3包括:
s31、通过旋转光源获得多张图片,将每张图片的镜片区域减去屏蔽区域获得每一张图片的检测区域;
s32、将多张图片的所有检测区域进行值法融合为一张用于缺陷表达图片作为检测图片;
s33、对所述检测图片进行分割,筛选出同一位置处的缺陷判断产品是否合格。
1.1缺陷的定义
当前对于缺陷有两种认知的方式,种是有监督的方法,也就是体现在利用标记了标签(包括类别、矩形框
或逐像素等)的缺陷图像输入到网络中进行训练.此时'缺陷意味着标记过的区域或者图像。第二种是无监督的
方法,就是将正常无缺陷的样本进行学习,学习正常区域的特征,网络检测异常的区域。
缺陷检测的任务大致分为三个阶段分别是缺陷分类、缺陷定位、缺陷分割,如下图所示,缺陷分类需要分类出
缺陷的类别(色、空洞、经线) ; 缺陷定位不仅需要获取缺陷的类别还需要标注出缺陷的位置; 缺陷分割将
缺陷逐像素从背景中分割出来。
节约成本:通过早期检测和修复缺陷,可以避免因缺陷导致的后期修复和维护成本的增加。此外,通过缺陷检测,还可以提高生产效率,减少资源和材料的浪费。
增强信任和声誉:对于制造商和供应商而言,进行缺陷检测并确保产品质量,可以增强客户对其产品的信任和满意度,进而提升企业的声誉和竞争力。
然而,缺陷检测也有一些限制和挑战。例如,检测技术和设备的要求可能较高,对检测人员的技能和经验有一定要求。