生活资讯
高数求导公式 、高中基本不等式公式
2023-04-12 00:37  浏览:48

高数常见函数求导公式

高数常见函数求导公式如下图:

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

扩展资料:

一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:

(1)若在(a,b)内f'(x)0,则f(x)在[a,b]上的图形单调递增;

(2)若在(a,b)内f’(x)0,则f(x)在[a,b]上的图形单调递减;

(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。

函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。

导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。

可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。

参考资料:百度百科——导数

基本求导公式18个

24个基本求导公式可以分成三类。

***类是导数的定义公式,即差商的极限。

再用这个公式推出17个基本初等函数的求导公式,这就是第二类。

最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。

1、f'(x)=lim(h-0)[(f(x+h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。

2、f(x)=a的导数,f'(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。

可以根据幂函数的求导公式求得。

3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。

16个求导公式是什么?

十六个基本导数公式

(y:原函数;y':导函数):

1、y=c,y'=0(c为常数)

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax, y'=1/(xlna)(a0且 a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

导数小知识:

1、导数的四则运算: (uv)'=uv'+u'v (u+v)'=u'+v' (u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2  。

2、原函数与反函数导数关系(由三角函数导数推反三角函数的):

y=f(x)的反函数是x=g(y),则有y'=1/x'。

3、复合函数的导数:

复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。

常见高阶导数8个公式分别是什么?

常见高阶导数8个公式如下:

常见高阶导数公式有莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v'+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。

任意阶导数的计算:

对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。

所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。

关于高数求导公式和高中基本不等式公式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评