生活资讯
对数相乘怎么算 、分数相乘的运算法则
2023-04-11 01:01  浏览:51

对数的乘法运算

1、利用换底公式;

2、整体考虑;

3、化各对数为和差的形式。

举题说明:log2 25•log3 4•log5 9

解:原式=log2 5² × log3 2² ×log5 3²

=2log2 5 × 2log3 2 × 2log5 3

=8 【(lg5)/(lg2)】 × 【(lg2)/(lg3)】 × 【(lg3)/(lg5)】

=8

扩展资料:

对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。

在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

怎样计算对数乘法

对数的概念英语名词:logarithms

如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。

log(a)(b)函数叫做对数函数。对数函数中b的定义域是b0,零和负数没有对数;a的定义域是a0且a≠1。 [编辑本段]对数的性质及推导定义:

若a^n=b(a0且a≠1)

则n=log(a)(b)

基本性质:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、因为a^b=a^b

令t=a^b

所以a^b=t,b=log(a)(t)=log(a)(a^b)

3、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

4、与(3)类似处理

MN=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

5、与(3)类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(b^m)÷ln(a^n)

换底公式的推导:

设e^x=b^m,e^y=a^n

则log(a^n)(b^m)=log(e^y)(e^x)=x/y

x=ln(b^m),y=ln(a^n)

得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由基本性质4可得

log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完) [编辑本段]函数图象1.对数函数的图象都过(1,0)点.

2.对于y=log(a)(n)函数,

①,当0a1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=-1.

②当a1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.

3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称. [编辑本段]其他性质性质一:换底公式

log(a)(N)=log(b)(N)÷log(b)(a)

推导如下:

N = a^[log(a)(N)]

a = b^[log(b)(a)]

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

公式二:log(a)(b)=1/log(b)(a)

证明如下:

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数

log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1

在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代

对数相乘怎么算?

log的乘法一般都用换底公式来解决:

log(a)b=log(s)b/log(s)a(括号里的是底数)。

例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。

log(a)b=log(s)b/log(s)a(括号里的是底数)的推导过程:

设log(s)b=M,log(s)a =N,log(a)b=R

则s^M=b,s^N=a,a^R=b

即(s^N)^R=a^R=b

s^(NR)=b

所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。

扩展资料:

对数的加减乘除运算规则:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

参考资料:百度百科-对数公式

对数相乘怎么算的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于分数相乘的运算法则、对数相乘怎么算的信息别忘了在本站进行查找喔。

发表评论
0评