生活资讯
奇函数图像 、奇函数图像关于原点对称吗
2023-04-08 01:29  浏览:51

奇偶函数怎么判断

奇函数的函数图像是关于原点对称的,而偶函数的函数图像是关于y轴对称的,因此如果想要分辨一个函数是奇函数还是偶函数,我们可以从该函数的函数图形着手进行分析。

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。

简介

偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。

但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。

什么是奇偶函数?有哪些?

8个典型奇偶函数有:

1、正弦函数(y=sinx)是奇函数。

2、正切函数(y=tanx)是奇函数。

3、余切函数(y=cotx)是奇函数。

4、余割函数(y=cscx)是奇函数。

5、反比例函数是奇函数。

6、f(x)=kx是奇函数。

7、f(x)=x^a,其中a为奇数。

8、双曲正弦函数伟奇函数,函数表达式为:f(x)=(e^x-e^-x)/2。

概述

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称。

点(x,y)→(-x,-y)。

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

奇函数与偶函数的图像

奇函数:由定义f(x)=-f(-x)可知

x为相反数时

函数值f(x)也取相反数

所以图像关于x轴对称一下,再关于y轴对称一下

两次对称和关于原点对称的效果相同

所以图像关于原点对称

如:y=5x的图像,y=1/x的图像等

偶函数:由定义f(x)=f(-x)可知

x为相反数时

函数值f(x)不变

所以图像只关于y轴对称

如:y=x^2的图像等

不懂追问,懂了记得采纳哦!

奇函数和偶函数怎么判断

奇函数和偶函数判断如下

1、定义上来看:

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。

2、图像上来看:

偶函数的tuxiang关于y轴对称,奇函数的图xiang关于原点成中心对称图形。

f(x)为奇函数《==》f(x)的图象关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

奇函数、偶函数的图像特点

1、奇函数图象关于原点对称。奇函数的图象,是个以原点为对称中心的中心对称图象。

2、偶函数图象关于y轴对称。偶函数的图象,是个以y轴为对称轴的轴对称图象。

3、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

奇函数图像

奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数

关于奇函数图像和奇函数图像关于原点对称吗的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评