有理数的乘除法怎么算?
算法
在有括号的算式里,要先算( 小 括号 )里面的,再算( 中括号 )里面的,最后算括号外面的。
1、四则混合运算顺序:同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。
有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。
2、乘法是加法的简便运算,除法是减法的简便运算。减法与加法互为逆运算,除法与乘法互为逆运算。
几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。
四则运算的运算顺序:
1、如果只有加和减或者只有乘和除,从左往右计算。
2、如果一级运算和二级运算,同时有,先算二级运算。
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
有理数的乘法法则
有理数的乘法法则:同号得正,异号得负,并把绝对值相乘。任何数与零相乘,都得零。几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。几个数相乘,有一个因数为零,积就为零。几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数的乘法具体步骤:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。例:(-5)×(-3)=+(5x3)=15(-6)×4=-(6x4)=-24
(2)任何数与0相乘,积为0.例:0×1=0
(3)几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负数;当负因数有偶数个数时,积为正数。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数
(4)几个数相乘,有一个因数为0时,积为0.例:3×(-2)×0=0(5)乘积为一的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3
(5)0没有倒数
(6)如果有两个有理数的乘积为1,那么称其中一个数为另一个数的倒数(reciprocal),也称这两个有理数互为倒数。例如:3与3分之一互为倒数,负八分之三与负三分之八互为倒数。[同号得正,异号得负]。
有理数的乘除法
有理数乘除法按如下法则进行计算:
乘法法则:
1、两数相乘,同号为正zhi,异号为负,并把绝对值相乘.例:(-5)dao×(-3)=15(-7)×4=-28。
2、任何数同0相乘,都得0.
3、乘积为1的两个有理数互为倒数.例如-1/2与-2。
4、几个不是0的数相乘时,负因数得个数是偶数时,积是正数;当负因数有奇数个数时,积是负数.例:2 ×3 × 4×(-5)的积是负数,而(-2)×(-3)× (-4)× (-5)的积是正数。
扩展资料:
一、有理数的除法法则
法则一、除以一个不等于0的数等于乘这个数的zhi倒数。(注意:0没有倒数)公式:a÷b=a×1/b
法则二、两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)公式:a÷b=a×1/b(b≠0)
二、分数的符号规则
(1)分数的符号规则:分子、分母和分数线前面的符号改变它们中任意两个的符号
值不变。用公式表示:
(2)利用分数的符号规则来简化分数规则:在分子、分母和分数线前的符号中,如果“-”符号的数目是奇数,则分数的值为负;如果符号“-”的数目为偶数,则分数的值为正。
有理数乘法的运算
有理数乘法的法则
其法则如下:
(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;
(2) 任何数同0相乘,都得0;
(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
(4) 几个数相乘,有一个因数为0时,积为0。
有理数的乘法满***换律、结合律和乘法对加法的分配律,即:
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c.
两个有理数相乘的方法步骤
有理数乘法与有理数加法运算步骤一样,*** 步:确定结果符号;第二步:确定结果的绝对值。
由于绝对值总是正数或零,因此绝对值相乘就是算术中的乘法,由此可见,有理数乘法,实质上是通过符号法则,归结为算术的乘法来完成的。
有理数乘法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于有理数乘法计算题80道、有理数乘法的信息别忘了在本站进行查找喔。