在模具的使用过程中,早期失效经常出现。失效的因数通常是磨损、腐蚀、交融、粘着等。其问题不单是延迟出产周期,也大大增加了出产成本,进而影响企业竞争力。为此,业界连续推出不同的处理计划,而PVD镀膜外表处理技能是倍受青睐的计划,能有用的处理上述难题。
PVD镀膜技能能够广泛应用于各类磨损、咬合、腐蚀、粘着、交融等而引起失效的工具、模具、机械零件、器械等。其中,因磨损引起的失效的产品(如:冲裁、冷镦、粉末成型等)涂层后可进步寿数2-20倍以上;因咬合引起产品或模具的拉伤问题(如:引伸模、拉伸模、翻边模等),涂层后能够从根本上予以处理。
光学薄膜应用于光学仪器
很多光学仪器的透镜上都镀有光学薄膜。望远镜的透镜上不镀光学薄膜,则当光线照射到镜片上时,某些波长的光反射时会发生干涉相长,使反射光的强度增强,透射光减弱,而且其他的光会产生互补色,会影响望远镜的成像。
光学薄膜可以改变光线的透光率,使反射过大的光透射增强,提高透光率,这时候用的就是增透膜。可以用控制薄膜的厚度来控制使哪些波长的光透射增强还是反射增强。在镜片上镀膜不仅可以提高望远镜的成像质量,还使望远镜对各种环境的适用性增强,如雪地,反射光太强会使望远镜成像色彩淡失真的,色差严重,在望远镜上镀上红膜就会很好的解决这些问题。
减反射膜
是应用广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。对于单一波长,理论上的反射率可以降到零,透射率为百分之100;对于可见光谱段,反射率可以降低到百分之0.5,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和低的杂散光。现代光学装置没有一个是不经过减反处理的。由于其具有很低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜。
由于超声波在传递过程中会产生低压区和高压区,并且气穴现象只在低压区发生。所以被清洗工件在超声波中需要上下振动,使工件上的每个区域都经过低压区以获得“微型刷子”的清洁作用。超声波在水中的传递速度为1500m/s,假设超声渡的频率为30000Hz,则所使用的超声渡波长
λ=速度/频率=1500/30000=0.05m=5cm
所以,如使用30000Hz的超声波,工件的上下振动距离应不小于5厘米.对于其他频率的超声波.震动距离可以同理计算出来。在纯粹的化学药剂浸泡清洗中,清洗溶液首先溶解工件表层的污染物,并逐渐向污染层内部渗透溶解,在这个过程中,在工件表层会逐渐形成一层溶解饱和层.这层饱和层将新鲜的化学清洗液与深层的污染物隔离,阻碍清洗液对深层污染物的继续溶解,如果这层饱和层不能被破坏去掉,清洁就停止了。对于比较脏的工件,纯粹的浸泡清洗方式很难将工件清洁干净。利用超声波的“微型刷子”的作用就可以破坏掉表层的溶解饱和层,新的化学药剂到达较深的污染层继续溶解,超声波接着继续破坏掉新形成的溶解饱和层,如此循环,清洁不断进行下去,直到工件被清洁干净。