催化剂是一种能改变化学反应速度,而在反应前后其本身的化学性质没有改变的物质。催化剂通常是由催化活性材料和催化载体构成。催化活性材料一般是金属或金属氧化物。其中贵重金属催化剂主要有铂、钯和钌等,普通金属催化剂主要有铜、铬、镍、钒、锰、铁、钴等金属及氧化物。催化载体是多孔材料,主要作用是使活性材料具有大的体表面积。催化载体分为金属载体、陶瓷载体和炭纤维载体。金属载体一般是以镍或镍铬合金为载体做成的带、片、丸、丝等形状,通过 “电镀”或 “化学镀”(即溶液浸渍)将铂、钯镀在这些载体上,并制成便于装配、拆卸的模屉。以陶瓷为载体的催化剂,一般是以硅—铝氧化物为载体,其结构有片粒状和蜂窝状两种。一般在陶瓷结构上涂敷一层仅0.13mm厚的α-氧化铝薄层,把活性的铂、钯等金属催化剂以微晶状态沉积或分散在多孔的氧化铝薄层中,并制成便于装配、拆卸的模屉。炭纤维载体可制作成线状、毡状、网状等形状,在载体上涂敷催化活性材料,制成便于装配、拆卸的模屉钢铁工业是能源消耗大户,而烧结工序能耗约占钢铁生产总能耗的10%。
催化燃烧不但可以使燃料得到充分利用,而且无论是从能源利用角度还是从环境保护角度考虑,其技术进步都会对社会发展产生重大影响。对催化燃烧技术的研究不应只停留在理论及实验室水平上,更具有现实意义的是应该让催化剂成为一种产业走进我们的生活。催化燃烧是典型的气—固相催化反应,它借助催化剂降低了反应的活化能,使其在较低的起燃温度200~ 300℃下进行无焰燃烧,有机物质氧化发生在固体催化剂表面,同时产生CO2和H2O,并放出大量的热量,因其氧化反应温度低,所以大大地抑制了空气中的N2形成高温NOx。而且由于催化剂有选择性催化作用,有可能限制燃料中含氮化合物(RNH)的氧化过程,使其多数形成分子氮(N2)。催化燃烧技术的研究与应用已经进入一个快速发展的阶段,它的作用也越来越被人们所重视。例如,汽车及其他机动车中由于引入了催化燃烧技术,节省了燃料,降低了废弃物的排放,使环境污染的程度大大降低。应用在锅炉燃煤中,实现了贫燃料的燃烧过程,打破了传统火焰燃烧的可燃界限,能进一步提高燃气炉的燃烧效率和热效率。另外,催化燃烧技术也已成功应用于其他领域,例如家用燃气的催化燃烧,水泥熟料的煅烧,但进一步的深入研究仍是非常必要的,例如石油化工企业中加热炉炉管烧焦技术上的应用研究等等。可见,催化燃烧领域的应用之广,意义之大,在未来的社会发展中,它具有举足轻重的地位,对节能降耗,合理利用资源和保护环境上都具有重要的推动作用。因此,大力推进催化燃烧技术的研究工作,积极推广催化燃烧技术的应用,对社会的发展和环境的保护具有深刻积极地意义。
催化燃烧气体传感器是一种用于检测因催化剂接触燃烧作用而产生的燃烧热的一种气体传感器。当可燃气体一旦与预先加热了的传感器相接触,在传感器表面就发生了催化燃烧现象,使传感器温度上升,这种温度变化可通过白金线圈的电阻变化进行检测。该设备可用于监测工业燃烧炉的燃烧及控制情况,检测汽车尾气中未完全燃烧物的含量,用于环境监测及可燃气体泄漏报警,矿井、车船、仓库等可燃气体危险品的检测以及用于催化动力学的研究等方面。在水泥工业中,水泥熟料的煅烧是通过煤的燃烧来实现的,煤的燃烧状况直接影响到水泥熟料的燃烧效果。煤在催化剂作用下,加速氧化物放氧,使煤炭迅速燃烧,提高燃烧的强度。给水泥煅烧提供了足够热能,同时也提高了水泥煅烧热动力,加速热传递,促进质点、固相、气相、液相反应,提高了物质扩散速度和相间反应速度。已有研究表明,“CHCT”催化剂在水泥熟料煅烧过程中通过对煤炭的催化燃烧可有效促进固相反应、液相反应以及熟料急冷。另有实验表明,MnO2的催化效果也较好,其添加量为8%~ 16%,且对水泥熟料的性能不会产生影响。目前常用于有机废气处理的催化剂有蜂窝状钯金属催化剂和铂金属催化剂。催化燃烧方式有电加热和燃气加热,燃烧方式有直接催化燃烧(CO)和再生催化燃烧(RCO)。催化燃烧一般适用于空气体积小、浓度高、温度高的气态有机物,废气中不能含有硫、铅、、、卤素灯会使催化剂的物质。对于客户来说,废气处理的一般原理是可以理解的,但是否能达到预期的处理效果却令人担忧。对于设计单位来说,如何为客户提供一套可靠、经济的加工设备是关键。