本发明对于镜头内部结构的检测方法,提高了断层扫描图像缺陷搜索的准确度与精度。不会因为搜索到非对焦缺陷,导致算法误检。且对点子等检测精度,由原来相差±10um,提高到了±5um以内。
本发明对于镜头端面和凸台的检测方法,针对端面与凸台检测的耗时,由原两张图片分别导入显卡中进行gpu运算深度学习模型,现在仅需要导入一张图片进行深度学习运算极大的降低了gpu运算的消耗,计算耗时由原1600ms,下降至900ms左右,极大的提升了效率。
具体来说,根据本发明的一种实施方式,首先在步骤s21中,利用层拍相机沿z轴方向对镜头内部进行层拍获得50张图片,将50张图片按照顺序每5张分为一组,共分为10组。然后对每一组图片进行缺陷分割和识别,将符合缺陷标准的所有缺陷放入到缺陷容器中。接着将位于同一位置处的多个缺陷筛选出来,筛选方法是通过在同一位置处计算缺陷中心距离偏差值,保留偏差值小于设定距离阈值的所有缺陷作为该位置不同层的缺陷。
1.1缺陷的定义
当前对于缺陷有两种认知的方式,种是有监督的方法,也就是体现在利用标记了标签(包括类别、矩形框
或逐像素等)的缺陷图像输入到网络中进行训练.此时'缺陷意味着标记过的区域或者图像。第二种是无监督的
方法,就是将正常无缺陷的样本进行学习,学习正常区域的特征,网络检测异常的区域。
缺陷检测的任务大致分为三个阶段分别是缺陷分类、缺陷定位、缺陷分割,如下图所示,缺陷分类需要分类出
缺陷的类别(色、空洞、经线) ; 缺陷定位不仅需要获取缺陷的类别还需要标注出缺陷的位置; 缺陷分割将
缺陷逐像素从背景中分割出来。
设备特点◆ 检测功能:对比工件(图标、颜色、纹理)于模板,从而判断被测物品是否存在瑕疵;◆ 对位功能:判断物体是否在期望的位置上,并反馈数据;◆ 测量功能:测量工件的长度、宽度、高度、角度、面积、体积;测量对象塑料薄膜产业(双拉膜、流延膜、吹膜、光学膜、薄膜涂布、塑料板材卫材薄膜等);无纺布产业(无纺布涂料、纺粘无纺布、水刺无纺布等);PCB产业(铜箔、Poly Preg、玻纤布、Cooper Laminate、PP纸等);