3.通过向沼气池中添加一定量的空气,可以除去沼气中的硫。然后,沼气通过管道进入压缩机,在压缩机中,压力升高至80-100 mbar,以满足发动机的要求。输气管道设有凝析油排放装置。所有的装置都是根据阀门和限位规工作的。沼气被供应给热电联产发电厂,在那里它被用作发电和热电生产的燃料。来自co发生器的热量通过热交换器加热蒸煮器。加热设备用于沼气厂设施之间的热量分配。从每个消化池消化的基质进入消化基质池,然后泵入分离器,在分离器中分离成固体和液体生物肥料。
5接种物
为加快沼气发酵启动的速度和提高沼气池产气量,要向沼气池加入含有丰富沼气微生物的物质,称为接种物(也叫活性污泥)。在一般的沼气发酵原料和水中,沼气微生物的含量很少,靠其自己繁殖,很难启动。所以,在新池装料前,要收集一定量的接种物。城市下水污泥湖泊、池塘底部的污泥,粪坑底部沉渣,屠宰场、食品加工厂的污泥,以及污水处理厂厌氧消化池里的活性污泥等都含有大量的沼气微生物,是良好的接种物。加入接种物的数量要足够,接种物太少,不利于产气:接种物过多,又会占去沼气池的有效容积,影响总产气量。因此加入接种物的数量一般应占发酵料液的10%-30%。
6搅拌
静态发酵沼气池原料加水混合与接种物一起投进沼气池后,按其比重和自然沉降规律,从上到下将明显的逐步分成浮渣层、清液层、活性层和沉渣层。这样的分层分布,对微生物以及产气是很不利的。导致原料和微生物分布不均,大量的微生物集聚在底层活动,因为此处接种污泥多,厌氧条件好,但原料缺乏,尤其是用富碳的秸秆做原料时,容易漂浮到料液表层不易被微生物吸收和分解,同时形成的密实结壳,不利于沼气的释放。为了改变这种不利状况,就需要采取搅拌措施,变静念发酵为动念发酵。单化粪池发展到高速消化器。1967年布赖恩特分离纯化了沼气发酵微生物中的产气、产菌和产菌,人们对沼气发酵的微生物学原理开始有了正确的认识。1969年,厌氧技术出现了突破性的进展,Young和McCarty发明了厌氧滤池。与此同时,Zeikus等人提出了厌氧消化的四类群理论,更确切地阐明了复杂有机物厌氧消化的微生物过程。1979年,厌
氧技术出现了重大的突破,荷兰农业大学环培系Leftinga 等研制成功了式厌氧污泥床.
这些新工艺使可溶性原料在池内发酵时间大大缩短,使沼气发酵技术得到广泛的推广。