起订:1
发货:3天内
搅拌器工作时,用搅拌器对低黏度互溶液造成湍流并不困难,但黏度达到较高水平后,由于黏滞力的影响,就只能出现层流状态。尤其困难的是,这种层流也只能出现在搅拌器的附近,离桨叶稍远些地方的高黏度液体仍是静止的。这样就很难造成液体在搅拌器内的循环流动,即在器内会有死区存在,对混合、分散、传热、反应等各种搅拌过程十分不利。所以,高黏度液体搅拌的首要问题就是要解决流体流动与循环的问题。在这种情况下,不能靠增大搅拌器的转速来提高搅拌器的循环流量,因为流体黏度较高时,搅拌器排出的流量很少,转速过高还会在高黏度溶液中形成沟流,而周围液体仍为死区。较为有效的解决办法是设法使搅拌器推动更大范围的流体。因此,高黏度液体的搅拌器直径与器内径之比、桨叶的宽度与器内径之比都要求比较大,有时还要求增加搅拌器的层数,以增大搅拌范围。
我们首先要对被搅拌的固体和液体充分了解,根据固体颗粒和液体成分选择搅拌方式。制作悬浮液就要实现固液混合,我们使用搅拌器实现固液混合的基本目的就是实现固体在液体中的悬浮,制成符合我们需要的悬浮液,并且要使其浓度和质量更加均匀。然而,在悬浮液的搅拌过程中,并不是一次制成的,而是要有个过程:
首先,我们要通过搅拌时固体悬浮在液体中,然后,在搅拌过程中固体颗粒会出现下沉,然后再悬浮的过程,在这个过程中固体颗粒逐渐变小,并逐渐渗入液体,并且在这个过程中,我们可以根据具体需要,改变搅拌器的搅拌方式,实现固体颗粒的聚合、分散等种种形式,从而达到我们对悬浮液的具体技术要求。
固液混合是个复杂的过程,在这个过程中,我们需要对悬浮液的工艺要求,固体和液体的性质有着充分的了解,这样才能确定搅拌器的一些参数和工作方式,搅拌器的槽的几何形状和搅拌叶片的形式等都对固液混合起的影响非常大,在实际的悬浮液制作过程中,我们要根据实际情况,确认搅拌器的选购或是否有必要对现有搅拌器进行改装,以及如何改装。
刮板材料大多数情况下可选用四氟乙烯,也可采用不锈钢作衬板,并以四氟乙烯作刀口,或者全部使用橡胶制作。试验表明刮板材料对搅拌功率影响不大。
在刮壁式搅拌釜设计过程中,另一个非常重要的环节是刮板固定方式的选择。常见的刮板固定方式如下:
弹簧支撑式:将刮板固定在弹上,要求弹材料的强度和耐疲劳性能都很高,其缺点是,在连续操作的聚合反应釜中,若弹在操作中断裂,会带来很大经济损失。
弹簧加载式:将弹簧放在钢管内,由弹簧使刮板贴紧搅拌釜壁面,缺点是,不适用于聚合反应釜,因为可能在钢管内发生聚合,生成的聚合物会使弹簧失去作用。
铰链式:采用铰链固定刮板,刮板向前运动时,流体对它产生的阻力使刮板贴紧反应釜壁面,也成为流体自压式刮板。特别适合分批式生产日化用品的搅拌器。其缺点是,对于连续进行的聚合反应釜,有可能因聚合物粘住铰链而失去自压的作用。
现代工业在进行生产开发时通常需要将材料充分混合使用,这就需要使用合适的搅拌器来达到效果,其中脱硫搅拌器就是常见的一种,因为搅拌器的使用功率包括材料选型都会影响搅拌效率。
1、按照工艺条件、搅拌目的和要求,选择脱硫搅拌器型式,选择搅拌器型式时应充分掌握搅拌器的动力特性和搅拌器在搅拌过程中所产生的流动状态与各种搅拌目的的因果关系。
2、按照所确定的搅拌器型式及搅拌器在搅拌过程中所产生的流动状态,工艺对搅拌混合时间、沉降速度、分散度的控制要求。通过实验手段或计算机模拟设计,确定电动机功率、搅拌速度、搅拌器直径。
3、按照电动机功率、搅拌转速及工艺条件,从脱硫搅拌器选型表中选择确定减速机机型。如果按照实际工作扭矩来选择减速机,则实际工作扭矩应小于减速机许用扭矩。