5分钟前 湖北工业防腐即时留言「在线咨询」[华新新材料0d8c5c7]内容:通过单独设计恒温装置,测定UHPC试件在热养护过程中的收缩变化情况,掌握其在热养护过程中内部变形发展的特点,并对热养护之后UHPC试件的干燥收缩进行测定。研究结果表明:UHPC的热膨胀系数为11.76με/°C.,当温度达到90°C时,膨胀值,为900με。当热养护温度达50°C,基体内部水化反应开始加剧,UHPC产生较明显的收缩,温度接近70°C时,收缩率突然增加,当热养护10h后收缩趋于稳定。UHPC热养护过后的干燥收缩值在龄期18d时趋于稳定。另外,试件尺寸的大小也是影响UHPC收缩率的原因之一,大试件的收缩率要大于小试件(由钢纤维长度影响,小试件内钢纤维由于体积小,未能均匀分布)。
约束条件下UHPC在热养护过程中的收缩
在工程实践中,为了保证结构的承载力,往往采用钢筋混凝土作为受力构件,对配筋UHPC在热养护过程中的收缩展开研究发现,UHPC在热养护过程中由于钢筋的约束而产生拉应力,对结构造成不良影响。研究发现在热养护过程中的收缩,不同配筋率下UHPC试件,配筋率越大,越能够增强对UHPC收缩的约束。随着配筋率提高,UHPC基体内的残余应用越大,基体内产生的残余应力较小。
这种新型混凝土的超高性能体现在超高的力学性能、的耐久性能、优良的体积稳定性能和的工作性能。其抗折强度是普通混凝土的3倍,相对于已经面世的超高性能混凝土,这种新型混凝土具有收缩变形下降50%、常温条件不需要蒸汽养护的优点,更高。
目前,超高性能混凝土材料呈爆发式增长,其应用领域已拓宽至大型桥梁、高层建筑、地下综合管廊、设施等多个领域。但在轨道交通建设方面,UHPC超高性能混凝土的实际应用较少,根据已应用的工程实际数据和UHPC的优异性能来看,其同样适用于轨道交通工程,主要体现在以下几个方面:
一般不采用单一的混凝土坍落度值来评价高性能混凝土的工作性。从理论上讲,高性能混凝土的流变性仍近似于宾汉流体,可以用屈服剪切应力和塑性黏度两个参数来表达其流变特性。在实际工程中,采用变形能力和变形速度两个指标来综合反映高性能混凝土的工作性更为合理。基于这种理论基础,许多学者提出了一些评价高性能混凝土工作性的方法,Texas大学的Eric P. Koehler对世界范围内使用的工作性测试方法进行了汇总,一共列出了61种测试方法,其中用于混凝土工作性测试方法有46种,自密实混凝土测试方法有8种,砂浆和净浆测试方法有7种。